Shengfu Cheng 1,2†Xuyu Zhang 3,4Tianting Zhong 1,2Huanhao Li 1,2[ ... ]Puxiang Lai 1,2,7,*
Author Affiliations
Abstract
1 The Hong Kong Polytechnic University, Department of Biomedical Engineering, Hong Kong, China
2 The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, China
3 Chinese Academy of Sciences, Shanghai Institute of Optics and Fine Mechanics, Key Laboratory for Quantum Optics, Shanghai, China
4 University of Shanghai for Science and Technology, School of Optical-Electrical and Computer Engineering, Shanghai, China
5 University of Science and Technology of China, Department of Optics and Optical Engineering, Hefei, China
6 University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China
7 The Hong Kong Polytechnic University, Photonics Research Institute, Hong Kong, China
Transmission matrix (TM) allows light control through complex media, such as multimode fibers (MMFs), gaining great attention in areas, such as biophotonics, over the past decade. Efforts have been taken to retrieve a complex-valued TM directly from intensity measurements with several representative phase-retrieval algorithms, which still see limitations of slow or suboptimum recovery, especially under noisy environments. Here, we propose a modified nonconvex optimization approach. Through numerical evaluations, it shows that the optimum focusing efficiency is approached with less running time or sampling ratio. The comparative tests under different signal-to-noise levels further indicate its improved robustness. Experimentally, the superior focusing performance of our algorithm is collectively validated by single- and multispot focusing; especially with a sampling ratio of 8, it achieves a 93.6% efficiency of the gold-standard holography method. Based on the recovered TM, image transmission through an MMF is realized with high fidelity. Due to parallel operation and GPU acceleration, our nonconvex approach retrieves a 8685 × 1024 TM (sampling ratio is 8) with 42.3 s on average on a regular computer. The proposed method provides optimum efficiency and fast execution for TM retrieval that avoids the need for an external reference beam, which will facilitate applications of deep-tissue optical imaging, manipulation, and treatment.
transmission matrix phase retrieval multimode fiber imaging wavefront shaping 
Advanced Photonics Nexus
2023, 2(6): 066005
Xuyu Zhang 1,2Jingjing Gao 1,3Yu Gan 1,3Chunyuan Song 1,3[ ... ]Honglin Liu 1,3,6,***
Author Affiliations
Abstract
1 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical Systems, University of Shanghai for Science and Technology, Shanghai 200093, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
4 Hangzhou Institute for Advanced study, University of Chinese Academy of Sciences, Hangzhou 310024, China
5 Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
6 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
7 Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
A communication channel should be built to transmit information from one place to another. Imaging is 2 or higher dimensional information communication. Conventionally, an imaging channel comprises a lens with free space at its both sides, whose transfer function is usually known and hence the response of the imaging channel can be well defined. Replacing the lens with a thin scattering medium, the image can still be extracted from the detected optical field, suggesting that the scattering medium retains or reconstructs not only energy but also information transmission channels. Aided by deep learning, we find that unlike the lens system, there are different channels in a scattering medium: the same scattering medium can construct different channels to match the manners of source coding. Moreover, it is found that without a valid channel, the convolution law for a spatial shift-invariant system (the output is the convolution of the point spread function and the input object) is broken, and in this scenario, information cannot be transmitted onto the detection plane. Therefore, valid channels are essential to transmit information through even a spatial shift-invariant system. These findings may intrigue new adventures in imaging through scattering media and reevaluation of the known spatial shift-invariance in various areas.
PhotoniX
2023, 4(1): 10
Xuyu Zhang 1,2†Shengfu Cheng 3,4†Jingjing Gao 2,5Yu Gan 2,5[ ... ]Honglin Liu 2,4,5,*
Author Affiliations
Abstract
1 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
3 Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
4 Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
5 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
6 Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
7 Photonics Research Institute, The Hong Kong Polytechnic University, Hong Kong SAR, China
8 e-mail: dwzhang@usst.edu.cn
9 e-mail: puxiang.lai@polyu.edu.hk
Imaging through scattering media is valuable for many areas, such as biomedicine and communication. Recent progress enabled by deep learning (DL) has shown superiority especially in the model generalization. However, there is a lack of research to physically reveal the origin or define the boundary for such model scalability, which is important for utilizing DL approaches for scalable imaging despite scattering with high confidence. In this paper, we find the amount of the ballistic light component in the output field is the prerequisite for endowing a DL model with generalization capability by using a “one-to-all” training strategy, which offers a physical meaning invariance among the multisource data. The findings are supported by both experimental and simulated tests in which the roles of scattered and ballistic components are revealed in contributing to the origin and physical boundary of the model scalability. Experimentally, the generalization performance of the network is enhanced by increasing the portion of ballistic photons in detection. The mechanism understanding and practical guidance by our research are beneficial for developing DL methods for descattering with high adaptivity.
Photonics Research
2023, 11(6): 1038
甘雨 1,2刘红林 1,2,*高敬敬 1,2宋纯元 1,2[ ... ]韩申生 1,2,3
作者单位
摘要
1 中国科学院上海光学精密机械研究所 量子光学重点实验室,上海 201800
2 中国科学院大学,北京 100049
3 中国科学院大学 杭州高等研究院,浙江 杭州 310024
利用相位恢复算法可以从光纤近端的光强分布求解光纤远端的场强分布。光纤的响应可以用传输矩阵描述。实验上则是在不同的输入情况下对输出端的光强分布进行足够数量的采样来测量传输矩阵。显然,采样点的位置分布,包括采样点数目和间隔,影响着传输矩阵的测量,而相位恢复算法的精度和效率与传输矩阵有关。文中提出采样间隔应该大于出射散斑大小,以满足传输矩阵不同行的统计独立性,在保证图像重建质量的条件下减少采样点数,提高重建效率。实验结果表明,当采样间隔小于散斑大小时,相同的图像重建质量下,随着采样间隔的增大,光场重建所需的采样点数量明显下降。当采样间隔大于散斑时,所需的采样点数量变化缓慢,约为输入图像像素数量的3.5倍。采样间隔固定时,随着采样点数的增加,相位恢复算法消耗的时间先减小后增大,因此存在一个最佳的采样间隔与采样点数。
散射介质成像 多模光纤 相位恢复 scattering medium imaging multimode fiber phase retrieval 
红外与激光工程
2022, 51(8): 20220072

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!